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PREFACE

This report summarizes theoretical analyses carried out

under contracts NASW-1778, "Research in the Theory of Magneto-

hydrodynamic Turbulence," and NASW-2082, "Theoretical Research

on Plasma Turbulence Involving Binary Particle Collisions and

Effects," over the period August 1968 to June 1971 and NASW-2352,

"Research on Plasma Turbulence Involving Binary Particle Collisic,:

and Collective Effects," over the period February 1972 to May 1977,

The publications that have been made under this contract are:

1. F.X. Murphy and G. Sandri, "Causality of the Nonequilibrium
Correlation Functions, Phys. Rev. Lett. 27, 381 (1971).

2. A. Klimas, R.V. Ramnath and G. Sandri, "On the Compatibility
Problem for the Uniformization of Asymptotic Expansions,"
J. Math. Analys, and Applications 32, 482 (1970).

3. A. Klimas, F.X. Murphy and G. Sandri, "Poincare-Lighthill
and Linear Time Scales Methods for Linear Time Scales
Methods for Linear Perturbation Problems," Quart. Appl.
Math., June 1972.

4. F.X. Murphy and G. Sandri, "Causality and Dispersion
Relations for the Two-particle Correlation Function,"
Bull. Am. Phys. Soc. 16, 552 (1971).

5. A. Klimas and G. Sandri, "Asymptotic Expansions in Hilbert
Space," Not. Am. Math. Soc. 18, 527 (1971).

6. F.X. Murphy and G. Sandri, "Uniformization of Asymptotic
Expansions," Not. Am. Math. Soc. 18, 928 (1971).

7. A.H. Kritz and G. Sandri, "On the Quasi-linear Method in
Plasma Turbulence," Bull. Am. Phys. Soc. 15, 96 (1970).

The following three papers are in preparation:

8. A.H. Kritz and G. Sandri, "The Ionization Model in Non-
equilibrium Statistical Mechanics."

9. F. Hanson, G.V. Ramanathan, A. Klimas and G. Sandri,
Model for Motion of Charged Particles in the Presence of
Electrostatic or Magnetostatic Fluctuations."

10. F.X. Murphy and G. Sandri,"General Dispersion Relations
for the Two-particle Correlation Function."
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I. OUTLINE OF THE, PROBLEM, MAIN RESULTS AND CONCLUSIONS

The main purpose of our study is to investigate plasmas in

which binary collisions are important ("energetic" plasmas) as

contrasted with "collisionless" plasmas (this latter being of

more direct interest to the fusion program). Under a number of

conditions which occur frequently, it is necessary to study thesc-

plasmas by means of nonadiabatic methods (as contrasted to the

adiabatic techniques exemplified by Bogolubov's method). A most

important example of such circumstances is:

1. A microunstable particle distribution function.

Other important examples are:

2. The presence of rapidly oscillating external fields
(i.e., when the external frequency is comparable to
plasma frequency, Oberman and Dawson),

3. The presence of persistent two-body correlations in
a stable plasma (Kritz, Ramanathan ard Sandri),

4. The presence of moderate external magnetic fields even
if not rapidly oscillating (i.e., when the Larmor radius
is comparable with the Debye length, Klimas and Sandri).

In outline, we can contrast the adiabatic point of view with

the nonadiabatic one as follows. If we don't use the adiabatic

approximation, we can formally solve the equation for the two-

particle correlation, g , with the help of a Green's function

operator, G , as

g(t) = G(t-X)F(X)dX (1.1)

and then obtain a formal equation for the one-particle distribu-

tion, F , as

DF -0tF LG (t-X)F (X)dX

fK (t-X)F (X)dX (1.2)
fo
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where L is a linear ('bhase-mixing") operator and

K(t) = LG(t) (1.3)

Approximations to the quantities G and LG have been studied

by a number of authors (Lenard, Dupree, Gurnsey, Wolff, C. Wu,

Rogister and Oberman). The adiabatic approximation to Eq. (1.1)

consists of writing (on the basis that F varies slowly)

gad(t) = G()dXFad(t) (.

and the corresponding adiabatic approximation to Eq. (1.2) is

then

d L o G(X)dFad(t )

= C[Fad(t)] (1.5)

which is the standard form of the kinetic equation for a stable

plasma(the Fokker-Planck equation of Landau or the Bogolubov-

Balescu-Lenard-Gurnsey modification of it). When either of the

two following quantities contain divergences

foG(X)dX , L G(X)dX
fo 

the adiabatic approximation clearly fails.

When the adiabatic kinetic equation, Eq. (1.5), holds, one

can deduce from it a set of moment equations for the density,

flow velocity and absolute temperature that allow for a fluid

description (provided, of course, that the system is not rarefied).

In the cases where nonadiabatic treatment is needed, one can try

to solve Eq. (1.2) or, equivalently, one can try to solve simul-

taneously for the pair of quantities (F,g). (Some authors replace

g by the density of field fluctuations I and then consider the

pair (F,I).). Meaningful moment equations for the nonadiabatic

system are at present not available in general. (This is also
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the case for the fully collisionless regimes. The moment equation.

of the Chew-Low-Goldberger theory are only semimicroscopic.) An

attractive possibility is that under suitable conditions one may

succeed in deriving from the nonadiabatic pair (F,I) coupled

equations for the particle kinetic energy density and the field

energy density which coincide with those proposed by Tchen.

It is impossible, at present, to obtain a general tractable

simplification of the nonadiabatic equations. We have, however,

been able to obtain general conditions that must be satisfied by

the real and imaginary parts of the Fourier transform of g,g.

These relations are in the form of standard dispersion relations,

e.g.,

Re g(O) = p fImz () dw' (1.6)

Since the dispersion relations have been shown to be valid without

the use of the adiabatic approximation (Eq. (1.6) is a general con-

sequence of the "causality" of particle propagation), they offer

a test for any approximation scheme one may try. For example,

they are violated in the "ionization model" (i.e., if the poten-

tial is switched on at t = 0) if the adiabatic approximation is

applied. Furthermore, since Im g determines DF/Dt quite di-

rectly and Re g is, in principle, measurable (by the scattering

of weak radiation from a plasma), one may hope that the dispersion

relations may one day help to coordinate experimental facts much

as the standard dispersion relations for quantum systems have done.

In view of the difficulties in treating the nonadiabatic

equations directly, it is important to obtain approximation methods

that give useful simplifications. We have obtained two schemes:

(1) the "reordering technique" (Ramanathan and Sandri) that has

been applied successfully to determine the behavior of the long-

range part of the stable plasma g function (the resulting g

satisfies the dispersion relations (Eq. (1.6)) and (2) the "com-

patible" multiple scale expansion (Klimas and Sandri) which has
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been successful to construct the evolution of F for the ioni-

zation model. Our results seem to agree with the independent

analysis of Humphrey, Wilson and Futterman, "Solution of the Rate

Equations by Multiple Time Scale Method," Lockheed Lab. preprint

(1971).

Since a general approximation scheme to handle the nonadia-

batic equations is not available, we have used numerical methoC.

to investigate their behavior by means of:

(1) One-dimensional models for charged particles in the presence

of electrostatic fluctuations which have nontrivial features in

common with two-stream or loss cone microinstabilities (i.e., a

Penrose zero in the dielectric function).

(2) Models for charged particles in the presence of a three-

dimensional isotropic spectrum of magnetostatic fluctuations. We

find a diffusion tensor substantially different from the adiabatic

one.

The numerical method that we have employed successfully

consists in Laplace transforming Eq. (1.2) and then inverting its

solution with the Bellman-Kalaba-Lockett technique. The numerical

integration scheme has proved quite successful even though the

systems considered do not resemble those originally discussed by

Bellman, Kalaba and Lockett.

The conclusions that arise from our analytic study of the

ionization model and from the numerical integrations of systems

with static fluctuations is that substantial numerical, as well

as qualitative, differences occur between the adiabatic and non-

adiabatic approaches. In particular,

1. For one-dimensional electrostatic fluctuations, the kernel

function decays as K(t) - 1/t giving rise to an F that grows

(or decays) substantially more rapidly than in the adiabatic

approximation. Furthermore, F exhibits a very long tail

* The situation is again analogous to that holding in the colli-
sionless regime where numerical integration of the Vlasov equa-
tion has successfully paralleled the results of the quasi-linear
theory for a "bump in the tail" distribution.
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(F - [t(Bn t)2]1l which is barely integrable. Such a tail is

totally absent in the adiabatic treatment. The nonadiabatic

total area under F is exactly zero, while in the adiabatic tread;

ment it is very large (or not defined).

2. In the ionization model, the correlations persist for all time-

in sharp contrast with the adiabatic theory which reaches instanr

equilibrium. Again, the adiabatic theory does not allow for the

long tail in the F function.

3. In the models with magnetostatic fluctuations, the diffusion

tensor Dad must be replaced by a diffusion function D(t)

The quantity

Dad D D(o) (1.7)

often is infinite or vanishes in sharp contrast with the results

of adiabatic approximation.

A general feature that emerges from the nonadiabatic theory

is that transport is not local in time. Thus, for example, the

heat flow vector is of the form

. t1
q(t) = -J h(t-X)VT(X)dX (1.8)

rather than the total (memoryless) adiabatic result

_% Fco -h

qad J [ h(X)djVT(t) = -KVT(t) (1.9)

The numerical analysis shows that the transport coefficients can

differ by substantial factors (several decades) from the adiabatic

results. We believe that this result is particularly significant

because static and steady-state configurations, as well as the

stability of a plasma with collisions, depend on the transport

properties.

The outline of this report is as follows. In Section II,

we give the calculations of the two- and three-body correlations
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needed to determine F for t-e ionization model. (The correla-

tions can be treated adiabatically in this case.) In Section II.i

we summarize the general dispersion analysis and discuss the

examples of the ionization model and of the static fluctuations.
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II. ANALYSIS OF THE CORRELATION FUNCTIONS

We consider the Lorentz gas from first principles. It is

constituted by N ions and one electron (equivalently a large

number of noninteracting electrons). The Hamiltonian is given by,
N

N = P2
H 2 = ( x-xj ) (2.1)

n=-

The mass of the electron can be taken to be one and the potential
to be monotonic.

We have Newton's equations which are written as

HN . .
x= p = v (2.

HN - ___' N
X-X iO1

p = _ N -s( _ - _ (2.3)
ax ax tl ax3 ,2 ax ax

where we have introduced the total potential for the electron
N

i=l

The system is contained in a large box of volume V with specu-

larly reflecting walls. We then have Liouville's theorem which

can be written as

DFN aFN ; aFN FN
Dt = 0 = d + x + p. -

aFN VFN _ (25BFN )
= -- + = · (2.5)

We introduce the reduced distribution functions by

N dx

Fs = FNf di (2.6)

i=s+l
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where s is the number of ions. The equation satisfied by the

reduced distribution functions is obtained from the Liouville

theorem as follows

P N N dx
E J- =, aFN + t..Tt- I[ vV I(

i=s+l i=s+l

The first term can be transformed as follows

N dN dx

N d i ' (2.eN v = v 2
i~s1i=s+l +

The second term in Eq. (2.7) can be transformed as follows

NEa'aFN 1 =

s EN aSiN N N
i 6FN -1 6dx 0 i dx

x av J=S+l x s+l ; TV j=S+l j

The first part of this quantity can be written simply as

IsFs (2.10)

The second part in Eq. (2.9),

ax av J=s+l j
i=s+l

can be reduced considerably. Using the symmetry of the F func-

tion, we have N-s equal terms. Therefore, the second contri-

bution to (2.9), given by (2.11), can be written

N-s s+ i O s+NjV S s+l dxslx (2.12,

Summarizing, we can write the Liouville equation in the following

form
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6Fs V .6 "8 s N-siat= -v.VFS + ISFS + N-sL F (2.1

with an obvious notation for L . We have carried out the reduc-

tion of the distribution function without introducing dimension-

less parameters. We now study the dimensions of the relevant

quantities.

From Eq. (2.6), we can prove readily

Fs =f Fs+l ds+l (214

Therefore, dimensionally, we have

[Fs ] = [Fs + l ] (2.15

Therefore, the only quantities that carry relevant dimensions are

the operators.

We introduce dimensionless variables as follows

0 Vthv

We now multiply Eq. (2.13) by the quantity

- (2.17)
vth

We then obtain

ro 6Fs O s rO s r- rO N-s 3 s+l FS +l
x , ~t + v.VF = . + .....- ' xs+16~Vt hVVV - th f3Xs
Vth Vh thi=l i Vth 

(2.18)
Using the dimensionless variable (2.16), we can rewrite

6Fs ' ' s X aFS S +3xg, d8¢,,.8FV, (2.19)

vth wX Sv n th s+

We will use the following parameters
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v2h kT , , nr3 1 (2.20,

We can introduce now the Meyer expansion given by
s s-1

Fs =k + k+X i +EE k2ij (2.21)

i=l i=l J=2
This gives the hierarchy for the correlation functions as

S

6f_ + v.4Vk ss I d= ISk+lk (2.22)f d 1 +1 (2.22)
i=l

The last term in Eq. (2.22) can be written

L9+lks+l (2.23)

Now, we carry out the direct expansion of the hierarchy for
the correlation equations. For weakly coupled systems, we can

write

8

v S =EISkS + I ki + eL k+l (2k24

i=1

The following ordering is now introduced
00

ks = enks(n) (2.25)

n=O

In zero order, we obtain

60s(0)
3-f--+ s(O) = O (2.26)

whose solution is given by

kS(o)(t) = e-v'VtkS(O)(o) (2.27)

It is convenient to use the following variables

im= x - xi (2.28)
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We can then write Eq. (2.27) more explicitly as

(2.29)

The use of variable (2.28) is suggested by spatial homogeneity

which we shall assume throughout the rest of the calculation.

In first order, we obtain

S

kS(l) + v.Vk1 () = Ise- vVtks(O)(o) + Iie KVt(i)() +
6t i+ v.i

i=l

+ jv dx t k+lev'7 Vtks~l. ()+J dXs+lls+le vVkl(0) (2.30)

The solution to this equation is given by

kS(l)(t) = e-v VtkS(1 )(0) + e-v*vt f eV' VXISev- VkdXkS
0

(0) (o) +

-v.VXdXkS-l(O0) (O) +

+ eV Vtf e V
o"~·"

d, .$s+l3s~le dxk (.)

dx I -v.VX k+1(0)(o)
dXs+l Is+le dXk

In second order, we obtain the following equation

akS(2)
dt +

s

v.Vk (2) = Isks(l)(t)+ ks-l)(t)L (i)(t)
i=l

dX I k9+
l

(l l t )s+l s+l 

(2.32)
We now examine the case s = 0 which yields

ak0(2)
at (2.33)

Specializing Eq. (2.31) for the case s = 1 , we obtain

12

+-vVt
+ e

f t
J0

s

e v

'

il Iie
i=l

(2.31)

k t )(-(i, v,t ) = kS()(i-vtv O)

f dxiIki (l) (t)



kl(1) = e-Vtkl(1)(O) + e- v
'
Vt eV.VXIle-V.dXkl(O)(o) +

+ e VVt e f dX2I2 e-v- XdXk2(0) (0)

A b t & A

+ e -v t ev0I 1 e vVX dXkO(0)(O) (2.34)

This expression can be manipulated into the following form

IIe e

+ d2 a( .,x av (° ) x-x-vt, o +

at k) -li)dX k ( ) ( 35) 

r e avn (thalve 0 at vontlx-vd tkl(O)

tdXe-vV e -x v

has a transient term - one term that (235)saturates to a constant in

time. We can write e written

n t Iv e (0) t )a

The part containing kl ( O ) is a transient in time so that this

has a transient term - one term that saturates to a constant in

time. We can write therefore

13



k° (2) = k0 (2) +f dX fdlIlkl(1)(x)

which, for large values of t, introduces a secularity. We have

k0(2) = kO(2)(0)

= kO(2) (o)
_, 8a (x-x1)

dx1 6~

(2.38)
To exhibit the secularity, we examine carefully the integral

/tdXO 6 (x-xl-V-)dt = d0 dX

r t 8¢
= Jo d ;- ( -Xl-~V)[t-i]

This quantity can be manipulated into the form

= t d f 8(x-x'Xl- vP) -

(2.39)

(2.40)

Both integrals reach a maximum (or saturate) when

I-XllI + r o
V (2.41)

but the coefficient on the first term grows with time. Therefore,

it is a true secularity.

We examine the transient term. We notice that if the quan-

tity

(2.42)

14
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I0
dX ' .kO (O),

ax av

(2.37)

+ fdx 1 _ d~kk)/.axx fo
t

+S ~8x

-- (X-Xl- V )

t , a a bxA0d~ ~{(x-Xl-VP)

t .

kl (1) (x-xl-vt, v, 0 )



is bounded in space, i.e., if

Ix l-vXI > R ask = 0 (2.43)

then we obtain

t dX k - constant (2.44)
0 O tf

For the other terms, again we can reverse the order of integra-

tion, giving, for example,

fd - (-xl-Vl )( + a dXk ) ('x , VO) (2.45)
fO ax 3ax

Here, the second integral saturates to a constant in time. Clear-

ly, we do have a secularity which we must eliminate by uniformiz-

ing the expansion.

Therefore, we introduce the extended functions

kS(iVITOsl. . ), (2.46)

which satisfy

k S( iVtt, 2t,...) = k S( i,v,t) (2.47)

and we have chosen the trajectory in extended space

~n = E nt (2 n(2.48)

so that the time derivatives can be written

Dk s ak s
_k

s ak s

+ eE + 2 -C - +O( 3 ) (2.49)
0 now expand the extended functions as follows

We now expand the extended functions as follows
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ks = ks(O) + &C(1) + 2s(12) + O(e3) (2.50)

where the correction terms should not contain secularities. From

this point on, the quantities are expanded extended functions and

we drop the bars under the functions.

Now, we consider the zeroth-order equation. We obtain

ak 0(O) 0 (2.51)

The solution of this equation is given by

c°(0°)(T) = k° (O)(
l
) (2.52)

For s greater than zero, we obtain

ak(o)+ v .ks(0) 0 (2.53)

0

whose solution can be written as

ks(O) = ks(O)(i-VIo, v,O ,Tl) (2.54)

The first-order equation is given by

61C 0(lk 61C O(1) ~k0 (0)
- (x - 1

+ ~-= dcl X-X1 ) kl (0) ' vT V, O.T)

(2.55)
We examine s = 0 first and find

kO(l) = kO(l)(0,l) + dXf dxl 8(x-x) kl((x-x1-vX,v,O,
1)
,

ak0(0)
T~~ t~~IC~~o( (Il) ~(2.56)

We eliminate the second term which saturates because

We eliminate the second term which saturates because
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kl(° = 0 (2..
1

so that we obtain

kO(O)(T) = k0(0)(T2) (2.1

This equation replaces Eq. (2.52). Therefore, we are left with

57)

58)

kO(l) = kO(l)(O, 1L) + foJ'dx dxl

(2.59)

Now, we examine the case s = 1 and we have

aZO(1l)

6'ro

akl(©)

a71

+ k 1 (1 ) = -(x-x) Ak 0 (0)
ax av

+ ~(-x- . +
ax av

+Sdx .. ak2 (0)
2 ( x -x 2) a

(2.60)

Integration yields

kl(l) = kl(l)(x-xl-V1 rOV, O.,i 1 ) + ahod%P 'a (X-Xl-VX) A, ( 2) +

;7X av

+ ( 1-ixx-~v(X-Xl-Vo'V'O'l) ++J dX (x7xl-v%) ,kl (x-x 1-Vv , 1 ) +fo TX a a3 v 1 1

dX f dx2 b(x-x2-vX) d (X)k2(O)
av , ,(X-Xl-Vo, x-x2-VTo, v,- O., j)

-a oki () (x-xl_-vTo v, O, 0 1 ) (2.61)

The last term would be a pseudo-secularity and for large x-x1

17
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would produce larger values than the leading-order term.

fore, we set

There-

(2.62)akl (0)
d~ 1 = 01

and we conclude

kl(0) = kl((O)(x-xl-vo , V1O, 0, 
2

) (2.63)

which replaces Eq. (2.54). We are then left with the following

quantity

kl ( 1 ) = kl(1)(x-xl-vr0 o,v,0, 1 ) + dX (x-xl )"vBj(- 0h)a--- (~2) +

+ f °dX ((x-xl-VX ) . a (X)k
l (

X
)

( x - x l v o v , ,1 ) +d~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~vr PV P'

T j (X ) x) -k-v2(oXV ' 
+ f dxf dx2 U(x-x 2-vX) av 1-2-:

(2.64)

Now, we examine the case s = 2 . The equation is given by

= (x-x ) k21(0)
ak2 (o)

+ dt1 + v.Vk2(l) + -(x-x2 ) 'dv._ +

+ 6(x-x 2 )
+ B-f 2)

ak2 (0)
12

C3 
+ .2(0)60 12

+ (x-Xt IZ3~ + fdx 3

(2.65)
Integration yields

18
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k2(1) = k2(1)(x1 xl -VTo, X-X2.V¶oVO,) +

+ fd[ -x 1 - ()kl(o)+sR· · 6S o (x-xl-) a k (0)X2''tvvvv oJ22 J

+ ( - X2-V X) ax( ( x-xl-vr ovoo, ,T2 )] +

+ f dX[-(x-xl-v ) + a(x-x 2 -vX ) ]*o 3Ž2 Z(x-xl-V¶X.XV ¶ v,0,12) ++d~~v ( X-Xl'-VO,' OVO,, 0X2 ) +-

+, E L() - -x 2-
v

v- v,, 1 ) (22 '
(X)k2O k2 (0) 0 (2c7)3 - v -that we conc2-lude

x- -'3 - wO
, vO, V 1 ) +

k 2(0) = k( )(x-o,x-x1 -VoX vTO,V, T2 ) (2.686)

Bywe the previous argument, we set

ak2(0)

bo that we conclude

k2(©) = k2( )(x-l-v~0, x- x2-V vov,OO.,l) (2.68)

This equation replaces Eq. (2.54) once more. Returning to (2.66):

we are left with

19



k2(1) = K2(1)(x-xl-VoX-X - 2 -V o ,v,O,¶l) +

+ fdx[ -(x 1 vX) a( vk (X-.X2 VO..vO,0 2) +

+ (ax-x 2-vX) (x)k1() l- ,vO,O, 2 )] +

+ Jf ° , ) d 2lvX.+ 'hX" X2 -VX )V O (X'-Vo, 2 ) +

(xX 2-V'orV,,O', 1

+ J dXJ dx3 i(x-x 3 -vX) a-k (x-xl-v.0 x-x2 -v¶O,
·*tx x -vX 8(X)k3(O)

x-x3-vto0,v,O, 1) (2.69)

In general, we can write

kS(l) = ks(1 )(x-x-Vo, V,O, T1 +

+ fo 
%

(x-xj-vX) s '(X-X(I)V oV°,OO +
i=l

+f dx 36(x-xi-vX) -v (x (X-V 0 ,O, 1 ) 
i=1

d+ dxf dxs +1 ix xs v) dv , (-xj-v o, v, O,I ~1)

(2.70)

By the previous arguments, we write

ak( X)0-( O)TOr' = or- ) Oo(2.71)
=1
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so that we conclude

ks(O) = kS(0)(x-xi-,vo,v,0,0,$2 ) (2.72)

Therefore, we conclude that Eq. (2.54) has been replaced by Eq.

(2.72) for all values of s .

Now,we consider the second-order theory. First, we consider

s = 0 . The equation is given by

ak0(0)
+ d'2 =

2
d akl (l)dxl (X-xl) v =

= S dx 1 (x-xl) [kl(l)(x- 1l- vo, V,O, l ) +

=o (x-xl l UV +1

+ Jo d (X-Xl-VX) vk (X) -l(-V-OVOOT2

+ O dX f dx2 (x-x2 -vX) 2-k

(X-xl-vrox-x2 -v' , v, OO0,2) 

Integration yields

k0(2) = 
' r

O
d A dX (-x kl (1) +f dx '1(X) v' U (X-X1-VX,v, O , l ) +

dX f dxl 6 (X'xl) o V o '(-xl-vL oo(0) ('2) +

- dx f dx1 6-(x-xl) - d-l -' -x(2) 

+

-
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ak0(2) +kO(l)
+ d '11

(2.73)



+ xf'. fd dxl 0(X-xl ) I ( ) v)k()~o

~

°f 8*~x~~~- x oI*xx~ (
) l ° '

*(x-xl-VX, v, 0, 02 2)

+f dX fdxl 'f(X 1)d dfdx2 B(x-x 2-viL) dv

*(x-xl-vX,x-x2 -VX,v,,O,O , 2) 

ko(l1) kO (O)(2.7
1 2'o ~l (o,~) - ~o (~2) (2.71

The second term can be written

k O(0) '

r
0

Jdx
1

x(x-sxl) 6 i 'dp c(%-IJ. a (0(2.7!
Other terms for large behave da1 ) vollos

Other terms for large To behave as follows

70f
kO(2) _ 'r 0 ~8 max d dx 8 xj)k 1 (1) (x-x-X v% -- d kdlf x 1F) 3V , vpO, 1'01 ) +
fot 0

-o TO max dfX S dxl 8((x-x1 ) a 
t
O max 6

x
dXf dxl 6x-x ) 1 -vz dj. " 1 ). VPl)'

z~~~kmx '6 ....

ako(o)
· 3v (2)

fO max fr x fo
~

° max -

+ O dk f dxl (X X1 )av dX T(x-xl-V 1) 
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a(x)kl(o) v, 0,0, 0a6- (x)((x-xl-vvk2 (0 ) 2

T O max to max
+ dx, sdx (x-xl) A dp S dx2

' (x 
2
-VvP) av k (X-Xl-VX,x-x)2 -vX,v, o0, (2.76)

Since, in each case, the quantity

¢(x-xl) (2.77)

nails down xl which nails down X , and so on, there is no secu-
larity. We then conclude

- :---(O,¶l) 2) +S dx, i6 (x-xl) d d
2

*(x-x
l
-v) kO(O) = 0 (2.78)

Integration of Eq. (2.78) with respect to x1 yields

-kO(1)(O'l ) ' l(k (~2) f dX1 '(x-xl) AV

*o . dp -- ) ) = 0 (2.79)

Unless the bracket is zero, the function kO(1)(0,r1) is secular
which would make kO(l) itself secular because the second term
in Eq. (2.59) is not a function of T1 and therefore cannot can-
cel the secular Tl dependence. If the bracket is zero,
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Tl -' (O,
°

1) = 0

from which we conclude

kO(l)(O,:,l) kO(1)(0,0,.
2
)

and also

kO(l)(r O) = kO(1)(o eOt2)

The bracket is, in fact, the Fokker-Planck equation

(2.80)

(2.81 )

(2.82)

ak ° -o(
)

2 ) = f

(2.83)
and the function k0 (2) is then given by

0(2) =f A dX fdx1 ~(x-xl) a (X-Xl-VXvO'l +

-f d dXdxl '(x-x 1 ) vf dp 60(x-x1-v(L) v 2 +

+ 0 dXf dx 1l (x-xl) Jv dL (X-XV) a6k (1) v

(x-Xl-VX, v,, o,o 
2

)

J+fo

(P)k2 (0)X-X2
' b~ "(X'Xl-x-VkX'X2Vk'9vP'O9O''T2 )

24

fdx2 ~(x-x 2-'V) ·

(2.84)

d~l ~~¢,'xx ) co '~" ¢'-.-.)k(°)'
dx 60 X-xl) dp (XV x VP) av 2)d1 37 Z- fo R' 1 ("2

dX fS dx x- 
'd·S i~6 6



We now examine the case s = 1 . The equation is given by

+aki(O)
+ d'~ 2 +2

V.k 1(2 )v.Vk
1

+

+ a(x-xl)3_%

akl(l)
T _

+rS d (x -k2(1)+ J dx2 6(X-X 2 ) v

Upon substitution, this equation can be written

+ 1( 1 l) J
+ OT i--- (X-X 1 -VT ZO V, 0, T )

1

+k1 (0) a
+ 2- .(X-X 1-VoV.,0 O,10, 2 ) +

+ v 1 (2)+ v.Vk

+ s, Xf dxJl 6-(x-xl) 

( (X-X;-VX+Vs J2 g +3V (x-xi -vX)v, O, )j +

+ (x-xl ) kC1 (x-xl-vo, v, O, T1 ) + 4B kO(O)

(O) + 7+ dX ¢(x-xl-vX) av()ki(0)

·(X-X 1 -VTo, V, O, 0,. ) +

X 
J fdx2 8¢,' (>-' ' )k2 (°) ,-j '" Ii ( XXl~ oXXV.ro

'
O, O, "I V, 1) +2)f

+ S d 4N ? (x-X2 ) -24k(1) (TXO-Vx rx-x 2 -V-rO, 0.O.Tl )
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akl(2) akl( l)
+ dTl

ak1(2)
o

(2.65)

+/o

= 60(x-xl) by

= ax (x-X) [ko(l)(o,o , 2)--~, Z- 2)v

d ¢(XXl_-VX
5'f



+ x xd-[v(x-xvl- x) (X-x2-v),v, O, O, +

+0a -~ (x)kl(O)) 
+ 10(x-x2 v d-v (v (X-X 1 -W-v,0,0, 2 ) +

+ ° dX[a(x-x l-v) + (xx- -vx)

(X-x 1 -V¶o,x-x2 -v0 o,v,0,O, 2 ) +

TO d(X)k3 (o)

0

· (X-X 1 -Vr
O

, x-x2-Vro0 ,x-x3 -vI
O

, , 0,, 2 

Performing the 0O integration yields

kl ( 2 ) J od0 d (x-x -vX) 
( X

( O O , 2) +

;dX A (x-xl-vX) X),7 1- z v-
° u fJodp adx "IX;Y~

· () ( x-v) (X-X-v (x+I)),v,o,,O,,) 

.fo° dx (x- 1 -vX) ( X ) kl (1(x-x-vrO, v, O, ) +a-f~- I UJvF- o'

+J1o
dA (x-x V(X)

37 1 v~ 7
0

+ J dX (x-x-vX )
0o~ x 

-x k2(0 )p 6-(x-x +(XL4)) v--- (~o)

0(x x v(
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(2.86)

a(x)k2(o)
av



dv (X-xl-vrov, O,O , T2 +

+J d8 (x-xl-v x) a Jd o
x

d4dx2 z (x-x 2-v(X+)) 

a(x) k2(° ()x x VAoXX2_V>oV,O O,,2 +
8 3v--(X-x1-v-COJ X~ 2'V70' V., , 0, 72) +

-r +f dXf

fdT0
+ ro d X

a (x+)kl (0)

a (X +)kl (0)
dv

+o dX dx,fo f~~~~~~~

dx2 a( - 2 )a )k (X-X1 l-V'oX-X 2-V'o'V'0 O 2)
d2 UK x-2- 'av 1 2-2

dx2o x(x-x2-v%) d) d___(x-xv(x+ )) 0

(x-x 2 -VTro V, O., O, 2 ) + ' (X-X 2-V(X+ ) )

(X-xl-v-xO )

2 x(x-x2- VX) (- [ L(
x

x-x-v(>X+i))2 a3, 2) vS- - j dU-L ' - ~) +

' ((x - i ] a ( Iv )k2 (x)-x
+

'

- 2 v(x+tl) 1 z~ (X -Xl-V 'oX-X2-V 2O'O'~2) +

+ Jo dXf dx 2 u(x-x 2-vX)
va () -

av I ~dpJ

(.kl( 1 ) A 6kl(0 )
O- (IL (X-Xl-Vlo'V,°V1 o ) + (X-X 1 -Vro s V,' 0, T2 ))

(2.87)
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The term containing the star is a speudo-secularity; in fact,

we have

odr fdx 6'x x' (x) d
r dXdx2 Tj(x-x2 -vX --- d0 '-'0

(2.88)
This seems to have secularities proportional to various powers

of o0 ' in particular, quadratic and cubic.

We examine in detail the following integral

f dx2 0(X-X2 ) vf dX -(x-x2 -vX) v k (X-X1 -Vto0 VJ,O,O,2) =

f x2 BR ( 2 ) Z f _Xi 2 (l-X o2) +

f 2 -x ) dx (x-x2 -v) 2 dv l v 0 0,

(2.89)
We study the second term of Eq. (2.89) written as

-f o fdx2 ~'(x-x2-vX) - d (x-x -vx0 Ir O-X

a(X+~L)kl(O)
8v

-_o°

(X-xl-vTO V'
O
, 0, , 2)

df dx
2 (\ -d2) dz (x-x -vz) a (zkl()

(X-X1-vo0 ,v,0, 0, 2) (2.90)
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Upon streaming, the first term of Eq. (2.1) is given by

To

dX~ dx2 B-f~ - ` 2~j a (X+P0L)kl ( o df dx2 z*xO xvX a A Ax-x2-X L z (x-x2-v(X+P)) dav-)'~0

(X-X1 -vOv x0,)0,)

= I dr2 dx2 (x-x2-VX) v- d z x--2 v) dv'

(X-xl-V, VO, ,O, 2) (2.91)

We can evaluate the collisional part of the integral as follows

Co N ,,Q (X)
dx__0 r d _ x- -vf dx2 . (x-x2) J dX x 2(x-x2-V) =

6=Vd cod f dx2 dx (X-x2 ) a .(x-x 2-vX) a (2.92)

We now introduce variables as

let x - x2 x' , vX = p. (2.93)

We can write the tensor part of this equation as

Tij(p) f dfx L(x) =a(x-) = -dx O(x) = dxi(x) 
i ax i j

-= - x x(x) eji I

- a f ;dx O(x)O(x-I) = - Q(p) =- - eJQ(uLJ2 Sx ~ 2a Sl~



(-eE ±) ~ - ejei2 e (e) T (2.94)

and we now have

00 

J dX Tli (P.) j= dp)Tij

( o )o }L5

6ij+e c (6ij-eiej/)

-'v d ~ v I (

(8," .... ) fo Q"(°)) ·- L = . v ' ( )

· 4 n'(5) (2.95)

This = to ta

(6h -eeej) to tne sio jPoo n(

=( j e n(O)eie 0o v i(op)h

v2 v2 2 

(6 2ei n(o) ~ (2.96)

This leads to the following expression
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2k1(0) -V

2
= {a (ij-eiet7 a i4- v

+ Q(O) aii-
2

eij

We now investigate

dxO(x) (x-,u) =

cO

,d ~, dkl (k)l 2e-ik4 = (2-)3 °JF d dddk 2eik.ejo l.L d Ii

= (27r) 3 f f dpp- 
.3 - 2 Zh ike L 0 d l kl~12dk 12(ik.e)e)-ike = (2)73 jdk

-00

*0 ik.e)e i)ke4

Now,

J (a) = L0 g _iL
-CO -

fdpeic
L = 216i8(a)

-00

Notice that J is an odd integral. Therefore, we conclude

J(a) = 7wi(a)

Therefore, we obtain for a

a > O

e = -1 a <O

(2)3 fdk|I2(-ik.e )rle(-k.e) =

(2.101)
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k(O) (2.97)

a = d
=

(2.98)

(2.99)

(2.100)

'dA a~ rOl ai Ws
~' (~) =

I =

, aJ = i

1= _ .(_2_)3 mk ik e ¢(k-e)2 fd1



We have the identity

(2.102)xc(x) = Ixi

Therefore, we have

a = -4r4 f dkl¢12lkel < 0

We can then rewrite Eq. (2.97) as

6k1(0) (I al f (8 -e ei /8 o fij-2eleji
= v - U + Ia(o v2I2 I _i v ii v2

(2.103)

1 kl(0)%j
(2.104)

To test for positive-definite nature of the collision integral, we

compute

(¢,A ¢)= ff dxdv¢(x-vt,v)A¢(x-vt)

= -Iaffdxdv v
¢

(S ijelej) a

-In(O)|IJ xdv[ d F- - (x-v-O.V) ) 2 (X-V O V
v- v i

= -ln(o)lffdxdv g(ev" °(x,v))

norr -v' VrOf( -61 -2ele
= -Il(o)lIJdxdve Tdve- -0 x½ , >x 2e

ii-goxv, v2

e-v Vr
0

)

-I~(o)l!dxd v ( ¢(xv) 2 )

rrF xTm6 ( 5 ij, 2 eiep\
t+ in(o)lT rfd x dO I (xXv 2TX-, N v A

ax(x, v )

(2.105),

o -2e e a -v .0
i 2i j - e .O0(x,v)2 =xB7v i
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The alpha term can be written

-I aIffdxdv[(l 6 i-ele Iv x~> x 1- Xr 6ii )J ~o ~(x~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~v)., v ~ ( ,v)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~vX.>(,V
' ~o~

6 -e e=--Ilffdxdv 60 6J l , J0 + 21 ffdxdv -ee
3-v~

i
v ie 3r

....... v ~ +j 2

1 GI

j

_ Ial2c A dxdv Gi
6 -e e

v
aO (2.106)

2
We see that for large T½ the ¶r term dominates.
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III. NONADIABATIC ANALYSIS

By considering the Lorentz gas in a weakly coupled regime,
we have shown That a correct lowest-order two-particle correla-

tion function solution to the BBGKY hierarchy is given via a

Green's function whose Fourier transform satisfies the analy-

ticity requirements for causality. The Bogolubov adiabatic

approximation is shown to imply a solution which is acausal.

Extension to tine s-particle correlation function is discussed.

The successful derivation of dispersion relations for the

fundamental correlation function (Green's function) gives us

conditions that any approximation to the behavior of a plasma
must satisfy, including instabilities.

The Lorentz gas, consisting of one electron and N-1 ions,

is described by the Hamiltonian
N-1 N-1

2 +- 2 
H = .+ 2 X(x ) x 2- + - (3.1)

iL :1 i=l

where the ions have fixed positions, xi , and the electron has
unit mass. The BBGKY hierarchy for the s-body distribution

function, Fs , for this system reads

s-1
6Fs s W

+ .VFs = v L i' vF

s
+

+ )(nrdo dxsVos rv (3.2)

where the magnitude of the potential, 0O , and its range, ro ,

are introduced so that Oi has unit magnitude and range. In

the weakly-coupled gas regime,

= E << 1 and nr =(3 3)

Spatial homogeneity of the electron distribution gives
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F1 = F(v,t) (3.4)

and for spatially homogeneous and uncorrelated ion distributions,

F2 = F + G(x,xl,v,t) (3.5)

where G is the two-body correlation function. Substitution

into the F1,F2 equations implies

1 = e dXlVOlVvG (3.6)

aG 'A J
A + v.VG = eVl. VvF (3.7)

where integral terms of order e involving F have been neglec-

ted in (3.6) and ones involving G(x,x
2
) and H(x,xl,x

2
) (the

three-body correlation function) have been neglected in (3.7).

Hereafter, x1 is taken to be zero except when several ions

are considered.

The fact that the equations are linear implies that they

can be regarded as describing a superposition of equilibrium and

nonequilibrium terms

F = Feq + f G = Geq + g (3.8)

where the equilibrium terms must satisfy

r d .
0 j= dx VO-VvGeq

, , J ~~~, ~(3.9)

v. VGeq = eV. VvFeq

Any spherically symmetric function for Feq(v) leads to

stationary solutions for these equations and the equilibrium

terms in Eqs. (3.6) and (3.7) can then be dropped. The non-

equilibrium terms satisfy

- = e f dx V.Vvg (3.6)
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+ v.Vg = EV.Vv (37')

Fourier transform methods on (3.7') readily yield

g (x,xlv,t) = e fdtf dx (x-x- ))V.Vvf(t)

.t . .A .,

= o dX VI(x-vX).Vf(t-X) (3.1d

where it is assumed that g(t<O) = 0; i.e., that the system is

disturbed from equilibrium at t = 0 .

Substitution of (3.10) into (3.6') yields

2t

t = 2 A* dX fi dxA -VjVv>(V) Vvf(t- )) (3.1])

an integrodifferential equation in v and t for f . Solu-

tion of this equation for appropriate initial conditions would

give the lowest-order behavior of f for all time, following

some initial disturbance from equilibrium.

Given such a solution, Eqs. (3.6 ) and (3.7?) are decoupled

and (3.10) is simply an integral expression for g which can be

viewed as a Green's function solution to (3.7')

g(,v,t) = dt dx G(x-x ,t-t' )eV.vf ,t ) (3.12)

in terms of a correlation "source" (underlined) which is assumed
to be zero for t < 0 . It is of some importance to note from

Eq. (3.10 that G does not tamper with the form of the dependence

on v in the source; in fact, v is basically a parameter in

the relationship between g and its "source."

The standard one-dimensional analysis of causality proceeds

from the inspection of the Fourier transform of the Green's func-

tion G(-); Titchmarsh's theorem gives equivalence of the analy-

ticity of
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00

A(,o) - dr eiTG(-r) (3.13)

in the upper half plane and the requirement G(T) = 0 for

t < 0 . In the present cased the condition G(x,T) = 0 for

T < x/v demands consideration of

-ik

A (k, d- ei dx e xG(, ) (3.14)

which is, in fact, analytic in the upper half plane for G zero

outside the forward cone xi < viT .

The Green's function G(x,¶) = 6(x-v¾)e(¶) for the correla-

tion is manifestly causal and

A(k,w2) = (2n)21 de
- i

(k.v real) (3.15)

Introducing c = or + Xi '

i 1 io
A(k, c) = 2 (o if ii > ° (3.16)

(2r) (wr+ii)-kv

i.e., A(k,w) is verified to be analytic in the upper half co-plane.

A(k,o) reduces to a constant times the distribution 6+(Q-k.v) on

the real axis and also satisfies dispersion relations there.

The Bogolubov analysis of the correlation function, gB '

rests on the assumptions
00

i) gB ' X ign(XX'lV t )

n=O

ii) gB depends on time only through f

iii) gB(x-vX,t) -)-> 
f and noting that depends on f only

Writing s = EVvf and noting that gB depends on f only
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through s , it follows that

Xt =s 3· (3.17)

where 6g/6ss is the vector whose components are functional
derivatives of g with respect to components of s

Equation (3.7') with substitution from (36') then becomes

v.Vg
B

+ , V dx VVvgB= (3.18)B) 0 ~ s(3.18)

Use of (i), equating powers, and use of (iii) implies:

go= v * V dxl (XI = x.v/v)

gn = 0 for n odd

g2 = vv (xk/v)Tij where T depends on (3.19)
v i= 12 j position only

and similar contractions of tensors depending on v,t with ones

depending on x,x
I

for higher-order even terms.

From the form of these solutions, it is evident that the

time dependence of g is not of a retarded character but

instantaneous. Consequently, the solution is acausal. Consid-

eration of a Green's function and its Fourier transform is not

appropriate for (3.l since it is not linear in gB but it is
appropriate for

v'VgB + 6 ;= Vv A = (3.20)

where f and s are assumed known. Expansion in powers of e
again gives the result that time dependence is instantaneous and

thus GB(X,r) for Eq. (3.20) must contain a factor 6(X-).
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As a consequence of this, AB(k,cu) is a constant function of

w and consideration of :nialyticity is pointless. In any case,

the instantaneous GB clearly is not causal in the same sense

that the exact G = 6(x-v)e((r) is. The adiabatic assumption

(ii) is simply too crude an approximation to give the proper

causality result.

Green's function analysis of the linear time scale solutions

for g leads to

GLTS = 6(x-x -V(,o O-r0 )) e(T O 0 0 6( 2 -j2 ) (3.21)

through second order; clearly, the result is causal on the To

scale and acausal on the x2 scale.

The results for the two-body correlation function

G (x,xl,vt) = G1 can be extended to s bodies. Writing

Fs = K12 -1 + X- combinations of Ki
s-1 indices in i1'. s-2

ss-2 places

+ ... + Gi +F (3.22)

i=l

it can be shown by induction that the s-body correlation function

satisfies

+[ i-J = source term involving lower-order
L correlations (3.23)

where terms of magnitude c or smaller in the s-body and higher

correlation functions have been dropped.

The exact Green's function, which is causal, again applies

for the s-body correlation.
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Example I - The Ionization Model

Consider the BBGKY hierarchy appropriate for a spatially
homogeneous gas. In leading order for small momentum transfer

(O << kT = 1), the two-particle correlation function, g , satis-

fies

x12 X +V 1 .V12 g = -xs2 y--l - ap2> l 2 (3.24)

F1 is the one-particle distribution function for the i'th species.

Equation (3.24) has the form of a continuity equation in config-

uration space. This fact implies that the "correlation charge"

QfdXl2g (2, v, v2, t) (3.25)

can be expressed directly in terms of the source of g

Q Std X ad dx R 12.(6 .. x- l( V l (v2,1Q = 2 - (( )F2 (v 2 X) (3.26)
X12 p1

Note that the definition of Q is introduced after the bulk

limit (N,V - oX with n fixed) has been taken (as implied by Eq.

(3.24).

Since f dx
1
2 (~ 1 2//x12 ) = 0 for any central potential, the

total correlation charge vanishes in leading order

Q = 0 (3.27)

Bogolubov's functional assumption violates this basic fea-

ture of the nonequilibrium equations. We illustrate this fact

with a simple but instructive example. Consider a neutral, ideal

gas in thermodynamic equilibrium. At t = O, "ionize" the gas by

switching on a two-body potential, $12 . The solution of Eq.

(3.24) is given by

g(X 1 2 ,v1,v2 ,t) = -[O(X12)-O(x12-vl2t)]Ml(1l)M2(v2) (3.28)

where M(v) is the Maxwellian. Strictly speaking, Eq. (3.28) is
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the result of linear tin- scale analysis. In a fully nonadiabatic

treatment (G.V. Ramanathan, A.H. Kritz and G. Sandri, Phys. Lett.

31A, 477 (1970), the function M adjusts to the ionization. This

adjustment does not alter qualitatively the considerations made

here. From Eq. (3.28), we can prove directly that Q = 0 for

all times. Indeed, from Eq. (3.28) we see that the correlation

g has a charge localized at short interparticle separations equal

in magnitude and opposite in sign to a correlation charge propa-

gated in the direction of the relative velocity. The correlation

function given by Eq. (3.28) does not reach thermodynamic equili-

brium in a uniform sense. A proper description of the approach

of the two-body correlation function to thermodynamic equilibrium

must include three-body collisions that damp the travelling part

of the correlation function. The travelling part of the correla-

tion moves away from a fixed region of phase space so that

lim g(xl29Vl1V2,t) = -(Xl1 2
)M

l (
v1 )M2 (v2 ) (3.29)

for fixed vl2 . However, we want to emphasize that Q is still

zero, not the integral of the right-hand side of Eq. (3.29),

- (x12 )M1 (vl )M2 (v2 )d 12.

Bogolubov's approximation for Eq. (3.24) is given by

gB(Xl2,Vl,V2,t) =f dkX a'(12 2X) _(-- 2 (Vl(Vl,t2 (t)
12 Pl 2

(3.30)
which gives for the ionization model

gB(Xl2'vl'v2't) = -0(Xl2 )Ml
( v

1 )M2 (
v
2 ) (3-31)

(i.e., the "equilibrium result"). This result leads to a viola-

tion of Eq. (3.27) and shows that it is not safe to check a non-

equilibrium result by inserting F(v,t) = M(v) and comparing the

resulting expression with an equilibrium formula.

The failure of Bogolubov's method is more evident in the
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presence of a strong magletic field. In this case, the left-

hand side of Eq. (3.24) is modified by the term

[ql(Vl x B).Vp2 + q2 (v2 x B).Vp2 ]g . The ionization model gives

g = -[¢(X1 2 )- (X1 2-V1 2 t-vl2sin Bt-. vl21 cos Bt)]Mi M2 (3.32)

where QiJ = EijeBk . The correlation charge satisfies

Q+ (ql(vl X B)V + q2 (v2 x B).Vp ]Q = 0 and thus is zero

for all times if it is initially zero. In examining the approach

of g to thermodynamic equilibrium, it is even more nonuniform

than in the first case because of the oscillations that appear in

the argument of k . The Bogolubov approximation, Eq. (3.30),

becomes meaningless when we consider the magnetic case with vll=O .
-.

The argument of 12 will be x1 2 - v
1 2 1 sin BX - -vl 2 1 cos BX .

This quantity has no limit as X tends to infinity. A proper

treatment of this problem has recently been obtained by A. Klimas

and G. Sandri, Ap. J., 169, 41 (1971). The presence of the mag-

netic field makes it clear that the relationship between

Bogolubov's formula (3.29) and the canonical equilibrium is rather

superficial.

Example II - Models of Plasma Instability

We can write the first equation of the BBGKY hierarchy as

aF1 aF1 at9-K1 1+ K F L 1 1 (3-33)
+ K11 L1 2g1 2 + 1 '-

where we have introduced

30 12 8
K1 v , L12 = F dx2 dv2 T- X (3.34)

In addition, the Vlasov self-consistent potential has been defined

through

t1 = f dx2dv2 01 2F2 (3.35)
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It is easy to show that if the interparticle potential 012

is the Coulomb potential, then *1 satisfies the Poisson equa-

tion, with the charge generated by the average over the one-body

velocity distribution function. The two-particle correlation

function, again in full generality, satisfies the equation

agl2
T- -+ K91 2 g 2 = eI1 2 g1 2 + EI 1 2 F1F 2 +

aF 1 aX1 2 aF2, X2 1
+ v 'x +X- + v T_+

1 1 2 2

+ gl2 .al +g l 2 . 6 2

+ v x d v B S_1 1 2 2

+ L2 h1 2 3
(3.36)

where we have introduced the correlation potentials given by

X12 = f dx 3 dv3 3 g23 (3137)

X21 = f dx3 dv3 2 3 g13 (3.3)

The correlation potentials are the terms responsible for Debye

shielding and are critical for the understanding of plasma in-

stability. In order to develop a more detailed nonadiabatic

analysis for these basic equations, we introduce Fourier trans-

fbrms and obtain, for a spatially homogeneous plasma, a simpler

set of equations which are cast in a form suitable for nonadia-

batia analysis; namely,

g12 + [D(k, V) + D(-kv
2 )gl2

i)F1 (3.39)

where the linear operator D is defined by

where the linear operator D is defined by
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D(k,v) = ik'v - i k* . dv (3.40)
avf 

The explicit form of the operator D can be written as

D(k'Vl)gl2 = ik'vlgl2 - ik a dv (341)

In the case of the stable plasma, the operator D can be replaced
by the first term. Under these conditions, a full nonadiabatic
analysis has been carried out showing the causal behavior of g
and the need for proper treatment in the neighborhood of small
kv .

We can set up a model that allows us to investigate the
mathematical behavior of an initially unstable velocity distri-
bution. We write the first two equations of the BBGKY hierarchy
as

f= -e f dx Ig = - dk Ig (3.42)

+ ikvA(k,v)g = Jf (3.43)

where the tilde represents Fourier transformed quantities. For
the time being, the model equations neglect recoil, but they
incorporate a most important feature that has to be investigated,
namel the fact that the propagation characteristics of the corre-
lation function are modified by a dielectric response function,

a , relative to the stable case. In fact, we have

a = 1 (stable plasma) (3.44)

and, in general, for a stable plasma,

8*(k) = A(-k) (3.45)

In the stable case, we have a zero for the D function

D(k,v) = ik'vA(k,v) (3.46)
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at

k *v = 0 (3.47)

This condition corresponds to

(a) k = 0 (long wavelengths)

(b) v = O (zero relative velocity)

(c) k orthogonal to v ( mode propagating perpen-
dicular to the particle velocity)

A zero for the D function that is fundamentally different from

the stable zero is given by

D = IkI (3.48)

The behavior of f for this case has been obtained by a rather

difficult numerical integration. The method employed consists of

transforming the coupled equations for f and g into an integro-

differential equation for f alone. This latter is of the

Fahltung form for Laplace transforms and therefore its solution

can be obtained in the Laplace variable. The inversion of the

Laplace transform was then obtained with the Bellman-Kalaba-

Lockett inversion method. The result of the numerical integra-

tion is shown in Figure 1. Extensive numerical analysis shows

that the qualitative features of the result are insensitive to

the specific value chosen for .

To construct the integrodifferential equation for f, we

solve the g equation as

g= fjd'e-iAk;v(t-x)f(k)f (3(49)

Therefore,

'd = -' f dk(t-X)f (X) (3(50)
=f ft(3.50)

where the kernel function is given by

+co

k(t) =S dkIl(k)J(k)ei t (3.51)
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and the k integration is in the direction parallel to the

relative velocity. With

-1 -Ikl/2I = J = - ejk/2 (3.52)

Ik-

- = Ikl (3.535

we readily obtain

k(t) = 1 (3.54)k~t)= + t-f

46



00 0 
44.

0 L
r-

a,

H
 

4

O
il 

-4-

E-4 
C

-

0

..i-

0 
4

n~~ 
+

~+

4'-

4'

O
C

+
- 

4
'4

+
'4'+

 
4
,.+

+
 

+
 

4-

0 
I 

"t 
-

I 
I~~~~S~

47



BIBLIOGRAPHY

1. Balescu, R., Phys. Fluids 3, 52 (1960).

2. Bernstein, I. and Engelman, F., Phys. Fluids 9, 937 (1966).

3. Bogolubov, N.N., "Problems of a Dynamical Theory in Statis-
tical Physics," in Studies in Statistical Mechanics (North-
Holland Publishing Co., J. deBoer and G. Uhlenbeck, eds.,
1962).

4. Bohm, D. and Gross, E.P., Phys. Rev. 75, 1851 (1949).

5. Dawson, J., Phys. Fluids 4, 869 (1961).

6. Dawson, J. and Shanny, R., Matt. 568 (1967).

7. Dawson, J. and Nokayama, T., Phy-. Fluids 9, 252 (1956).

8. Drummond, W.E. and Pines, D., Nucl. _Fus. Suppl. 3, 1049 (1962).

9. Drummond, W.E. and Rosenbluth, M.N., Phys. Fluids 5, 1507 (1962)

10. Dupree, T.H., Phys. Fluids 4, 696 (1951).

11. Dupree, T., Phys. Fluids 6, 1714 (1953).

12. Frieman, E. and Rutherford, P., Ann. ?hys. 28, 134 (1964).

13. Guernsey, R., Ph.D. dissertation, Univ. of Mich., Ann Arbor,
Mich., 1960.

14. Guernsey, R., Canadian J. of Phys. 45, 179 (1967).

15. Harris, E., Phys. Fluids 10, 238 (1967).

16. Humphrey, C.H.; Wilson, R.N. and Futterman, W.I., "Solution
of Rate Equations by Multiple-time-scales Method," Lockheed
Research, Palo Alto, Calif.

17. Iordanskii, S. and Kulikovskii, A., Sov. Phys. JETP 19, 499
(1964).

18. Kadomtsev, B.B., Plasma Turbulence (Academic Press, N.Y.,1965).

19. Klimas A. and Sandri, G., Ap. J. 169, 41 (1971).

20. Klimontovich, I.L., Soviet Phys., JETP 34, 114 (1958).

21. Kritz, A. Ramanathan, G.V. and Sandri, G. in Kinetic Equations
(Liboff and Rostoker, eds., Gordon and Breach, 1971).

48



22. Landau, L., J. Phys. 10, 25 (1946).

23. Lenard, A., Ann. Phys. 10, 390 (1960).

24. Murphy, F.X. and Sandri, G., Phys. Rev. Lett 27, 381 (1971).

25. Oberman, C.; Ron, A. and Dawson, J., Phys. Fluids 5, 1514 (1962).

26. Penrose, O., Phys. Fluids 3, 258 (1960).

27. Pines, D. and Schrieffer, J.R., Phys. Rev. 125, 804 (1962).

28. Post, R.F. and Rosenbluth, M.N., Phys. Fluids 9, 730 (1966).

29. Ramanathan, G.V. and Sandri, G., J. Math. Phys. 10, 1763 (1969),

30. Rogister, A. and Oberman, C. Matt 583, 1967.

31. Rosenbluth, M.N., "Topics in Microinstabilities," in Advanced
Plasma Theory, Course 25 (Academlic P-.ess, N.Y., Rosenbluth, ed.,
1964).

32. Rosenbluth, M.N. and Post, R.F., Phys. Fluids 8, 547 (1965).

33. Rostoker, N., Nuclear Fus. 1, 101 (1961).

34. Rostoker, N., Phys. Fluids 4, 479 (1964).

35. Sandri, G., Ann. Phys. 24, 332, 380 (1963).

36. Thirring, W., Nuovo Cimento, Supp. XIV, Ser. X, 385 (1959).

37. Toll, J.S., Phys. Rev. 104, 1760 (1956).

38. Vedenov, A.A. and Velikhov, E.P., Nuclear Fus. S;.pp. 2, 465
(1962).

39. Vedenov, A.A. and Velikhov, E.P., Soviet Phys., JETP 16, 682
(1963).

40. Vedenov, A.A.; Velikhov, E.P. and Sagdeev, R.Z., Soviet Phys.
Usp. 4, 332 (1961).

41. Wolff, P.A., Phys. Fluids 5, 316 (1962).

42. Wu, C-S., "A Useful Operator in Plasma Kinetic Theory," JPL,
Calif. Inst. Tech., Pasadena, Calif.

49


